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AJIetnct-The absence of a unified, tractable model to predict the elastic response of a multi·layered
laminate (say 100 layers) has foiled attempts to understand the failure modes of practical composite
structures. Global models, which foDow from an assumed displacement field and lead to the definition of
effective (or smeared) laminate moduli, are not sufficiently accurate for stress lleId computation. On the
other hand, local models, in which each layer is represented as a homoaeneous anisotropic continuum,
become intractable as the number of layers becomes even moderately large (approx. 10). In this work, we
blend these concepts into a self-consistent model which can define detailed response functions in a rqion
of interest (local), while representing the remainder of the domain by effective properties (eIobaJ). In this
investigation the laminate thickness is divided into two parts. A variatioDal principle bas been used to
derive the JOverning equations of equilibrium. For the global region of the laminate, potential eneqy has
been utilized, whi1e the Reissner functional has been used for the local region. The field equations are based
upon an assumed thickness distribution of stress components within each layer of the local relion and
displacement components in the global region. The derived boundary conditions imply that the computed
stress field on the surfaces of the global region and the prescribed tractions (point wise in an elasticity
sense) satisfy the conditions of vanishing resultant force and moment identically. The same conditions are
satisfied in the local region. The stress fields obtained by this formulation compare very woll with those
obtained by other approaches for laminates with a smaD number of layers. For large number of layers,
internally consistent results are achieved by varying the representation of the global region in the present
model.

INTRODUCTION

The principal problem of interest in the present investigation is the same as that treated in (1],
i.e. the stress analysis of a composite laminate built of anisotropic elastic layers of uniform
thickness and subjected to prescribed tractions and/or displacements on its boundary surfaces.
The body is bounded by a cylindrical edge surface and upper and lower faces that are parallel
to the interfacial planes. This assumption is made only for convenience in writing the governing
equations. There is no difficulty in extending the model to include laminates of variable
thickness.

In practical applications, numerous layers may be present (use of 100 layers in aircraft
structures is not unusual). ContemporarY models are incapable of providing precise resolution
of the local stress fields in the vicinity of stress raisers under such conditions. Global models,
which follow from an assumed, usually elementary, displacement field, lead to the definition of
effective (or smeared) laminate moduli and are not sufficiently accurate for stress field
computation (I]. On the other hand, local models, in which each layer is represented as a
homogeneous, anisotropic continuum, become intractable as the number of layers becomes
even moderately large-in some methods as few as four layers result in technical/economic
barriers to accurate stress resolution. In this work we blend these concepts into a self­
consistent model which can define detailed response functions in a particular, predetermined
region of interest (local), while representing the remainder of the domain by elective properties
(global). Such dual representations are not without precedent in solid mechanics. For example,
Gurtin {2] discussed this approach with reference to the solution of crack-tip stress field
problems. Wang and Crossman (3] used an effective modulus representation of regions of a
laminate, however,. only the extensional response of the regions were considered, i.e. the
ftexural and ftexural-extension coupling characteristics of laminated bodies were ipored.
Hence, that approach fails to provide correct solutions to certain elementary laminate problems
for which exact solutions are available. Stanton et al. [4] used a global representation based
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upon a three dimensional laminate model developed by Pagano [5] which is based upon the
assumption that the stress field is only a function of one space coordinate. This is a
generalization and improvement of the material model given in [3], however, this approach is
not convenient for coupling with the model presented earlier [1]. Furthermore, it is desirable to
retain the model [6] as a special degenerate case of a global model since that result was shown
to produce very good agreement with a known elasticity solution for transverse normal stress
az [7].

There have been several investigations of the interlaminar stress fields in laminated
composites. Pagano [I] has given a detailed description of the relevant literature in this field. A
recent review article [8] by Solomon presents an up to date literature survey in related topics as
of 1980. In the present paper, reference will be made of only those publications which are not
covered by [1,8]. Spilker and Ting [9] have conducted the static and dynamic analysis of
composite laminates using hybrid stress finite elements. Raju et ai. [10] have investigated the
free edge stresses in layered plates using eight node isoparametric elements. In both these
publications, the laminate idealization for a reasonably accurate finite element analysis had to
be very fine, i.e. a quarter of the laminate was divided into about 600 elements. No more than
four layers were considered for numerical calculations. For moderately large number of plies
(say 10), these approaches will lead to computer storage/economic difficulties.

Blumberg et at. [II] studied the edge effects and stress concentrations in composite
laminates made of glass sheets bonded with polymer adhesive. The governing equations
employed were similar in nature to those given in [1], however, not as general. For example,
only isotropic layers were considered with the stiff layers being represented by the Kirchhoff­
Love theory. Furthermore, the implied edge boundary conditions are not sufficient to satisfy the
principle of "layer equilibrium" [1]. The differential equations were solved by perturbation
technique defining the dependent variables at three different regions along the width of the
laminate. This division of the width has enabled the authors to overcome computation
overflow/underflow difficulties.

Finally, Partveskii [12] has presented an approximate treatment of a free edge problem. This
model combines the treatment of [13] with a model based upon a layer on an elastic foundation
in order to define the distribution of interlaminar normal stress.

VARIATIONAL PRINCIPLE

The laminate considered in the present investigation is shown in Fig. l(b). The laminate
thickness comprising of N +M layers is divided into two parts viz; (i) local region (I) and (ii)
global region (g). N is the number of layers in the local region and M is the number of layers in
the global region. In this work, we shall assume that the interface between g and l is a plane
z == const., although less restrictive assumptions are possible. A variational principle as de­
scribed below has been used to derive the set of field equations and boundary conditions.
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Fig. I.(a) Laminate half thickness divided into more than one global domains with different types of
interfaces. I-Iocal-global interface, Il-giobal-local interface, III-gIobal-global interface. (b) Laminate

half thickness with one local-global interface.



Global-locallaminate variational model

Different variational functionals in two different regions of the laminate are used such that
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and body forces are neglected. In eqn (1), the first term represents the potential energy for the
global region, the second term is the Reissner variational functional for layers in the local
region and the third term is the potential energy of the prescribed surface tractions. The
notation used here is the same as that of Ref. [1], with the exception that the subscripts'/' and
'g' denote respectively the local and global regions. In eqns (2), Ii' and w are strain energy
density functions, the first in terms of displacements Uj and eij> the expansional strain
components, and the second in terms of stresses U'jj and ejj'

For a layered continuum in the local region, eqn (1) can be rewritten as

(3)

where the superscript (k) attached to the bracket sianifies that each variable within the bracket
is associated with the kth layer. The use of Green-Gauss theorem and some mathematical
manipulations in eqn (3) yield the foUowing equation,

(4)

where Vt is the volume of kth layer, Sj and S'i represent the outer surfaces bounding the local
region, the former representing the portion with prescribed tractions and the latter with
prescribed displacements. n represents the interlaminar surface between kth and (k + l)th
layers in local region that does not belong to S' or S", S~ and S; represent the bounding
surfaces for the global domain with prescribed traction and prescribed displacement conditions,
respectively. S represents the surface common to the local domain and the global domain. A
superscript/subscript I denotes the local region and g denotes the global region. Clearly, as
shown by eqn (4), the governing equations of elasticity can be obtained as a consequence of
variational eqn (1). Equation (4) will be used to derive the field equations and boundary
conditions for the two regions of the laminate.

DEVELOPMENT OF THEORY

For each layer in the local domain, the theory developed in [1] has been used. The details of
the derivation of equilibrium equations and continuity and boundary conditions for this domain
are not repeated in this paper. For the sake of continuity, only relevant equations are provided.
Figure 2. shows the coordinate axes and thickness of a single layer in the laminate. The
interlaminar stresses O'z, Tn and Tyz at the top of the layer are denoted by P2, t2 and S2'

respectively, while the corresponding stresses at the bottom of the layer are designated as Pit tit
and St. In the local domain the inplane stress components are assumed to vary linearly throuah
the thickness of each ply. The substitution of these stress components in the differential
equations of equihbrium [1] yields the interlaminar stress components in terms of tractions Pi' ti,
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Fig. 2. Ply coordinate axes and rotation notation.

Sj (i = 1, 2) and force and· moment resultants. These stress-stress resultant relations have been
used in eqn (4) in local domain integrals. In the global domain, an assumed continuous
thickness distribution of the displacement field is used. On the basis of these facts, the field
equations, interfacial boundary conditions, and edge conditions within the local continuum
remain the same as derived in Ref. [1]. The development of the required relations for the global
domain and global/local interface follows. We assume that the global domain is composed of
layers, each possessing a single plane of elastic symmetry, Z = const. In this domain, the
displacements are assumed to be of the form

(5)

Z2
W= WO(x, y) + z'l'Ax, y) +2' 4J(x, y)

where u, v and ware the ciisplacement components in the x, y and z directions, respectively. It
can be seen that the number of displacement functions agrees with that given by the variational
principle for each layer in the local domain. The substitution of the displacement functions (5)
into the strain displacement relations of elasticity leads to the following stress~strain relations

(i, j = 1,2,3,6)

(6)
(i, j = 4, 5)

in standard contracted notation, where Cjj are the components of the anisotropic stiffness
matrix, ej are engineering expansional strain components and €~, Ki and f3i are defined by

(7)
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The stress components 0'1> 0'2' 0'3, 0'4, Us, 0'6 stand for O'D 0'." Un Tyv 'f1(n 71('" respectively while
E~ (i = 1,2, ... 6) represent corresponding engineering inplane strain components. We introduce
the following stress and moment resultants

f
H/2

N; = O'jdz
-HIZ

f
H/2

AI; = O{zdz
-Hl2

(i= 1,2,3,6) (8)

where H is the thickness of the global region and H3 and M3 are mathematical, not physical,
quantities.

Substituting eqns (6) into (8) and conducting the integration, we obtain the following
constitutive relations for the global domain

(a, 13 = 1,2,3,6)

where

(i, j = 4,5)

I
H12

- - _ 2 3 4(Aq• Bij. DijJ F;;, Hii ) - (1, z, z , z , z ) Cij dz
-HIZ

(i, j = 1,2, .. ,,6)

f
Hl2

Pa = Caftt/J dz
-Hl2

(9)

(a,l3::::. 1,2,3,6)

(i = 4, 5).

With the knowledae of the distribution of elastic properties e'l and expansional strains, one can
obtain the values of eftective stiftness matrices A,. B, D, F and H; and effective "non­
mechanical" stress and moment resultants, P,. and Qa'

As in [1], we make the following definitions

(10)
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where f may represent any of the displacement variables u, v and w. Through the use of
relations (5) and (10), the functions involved in the displacements for the global domain can be
expressed as

UO =! u
2

° 9 _ 15 Aw =-w--w
8 8

(11)

With these relationships, one can express the constitutive relations for the global domain in
terms of the same displacement parameters as those for the local domain. This simplifies the
definition of the required continuity conditions.

With the use of the assumed stress field in the local region and displacement fields in the
global region in eqn (4), the required field equations, continuity and boundary conditions can be
obtained. For the local region the equilibrium equations, constitutive relations, edge conditions
and interfacial continuity conditions are given in [1]. For the global region the equilibrium
equations, which follow from substituting (5) into (4), become

(12)

where the symbols ti, Si, and Pi (i =1,2) retain the same meaning as defined earlier for the local
domain. Assuming perfect continuity of tractions and displacements at the g - I interface, the
local-global interfacial conditions are given by the previous substitution into (4), as
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t~k) = t~k+l)

and (a) local-global (interface I of Fig. la)
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(13)

(13a)

It can be shown that if we consider more than one global region, the following interfacial
conditions are required:

(b) global-local (interface II of Fig. la)

(13b)

(c) global-global (interface III of Fig. la)

(13c)

where the parameters with superscript 'k+ l' represent those for the layer above the kth layer.
The parameters on the I.h.s. of eqns (13a) and r.h.s. of eqns (13b) are defined in Ref. [I]. In the
expression for R2of [1], the roles of PI and P2 were interchanged by mistake whereas R( was
correct. The correct expression for R2 is

(14)

For the edge surface of the global domain, one term each of the following products must be
prescribed:

(15)
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The boundary conditions at the top surface are given by

S~N+l) '" §~N+I) or Vo +H f/ly = V (16)

where the right hand sides in the aforementioned eqns (16) represent the prescribed external
tractions or displacements. The boundary conditions at the bottom surface remain the same as
those explained in Ref. (l]. This completes the development of the present theory. We observe
that the governing equations for the global continuum, eqns (9), (12)-(13), combined with the
governing equations for the local continuum, eqns (25)-(28) of [1], and boundary conditions at
the bottom and the top surfaces constitute a set of 23N +27 equations in terms of like number
of unknowns. This system can be reduced to 13(N + l) equations by eliminating the force and
moment resultants from the set of governing equations. Relations (15) show that 7 edge
conditions are required for the global domain, while 1N edge conditions are required for the
local domain, eqns (29) of [1].

SPECIFIC PROBLEM AND SOLUTION

The present model has been used to conduct the free edge stress analysis in a symmetric
laminate consisting of 2(N +M) perfectly bonded layers. The laminate is subjected to forces
applied only at the ends y == const. such that a constant axial strain lEy = IE is imposed. Because
of the symmetry in ply orientation of the laminate about the midplane, the deformation is
symmetric with respect to x and z. Only the z symmetry will be employed in the specific
problem treated, so that half of the laminate thickness has been considered. The lower N layers
form the local region whereas the remaining M layers constitute the global region as shown in
Fig. 1(b). The stress field in this class of problems is a function of x and z alone and
consequently the force and moment resultants and the interlaminar stresses depend on x only.

LOCAL DOMAIN

By the use of strain displacement relations (1) of [14] it can be shown that the most general
form of the weighted displacements within each layer is given by

C 2
u= U(X)--T-+C3Y

(17)

v* = O(x) + CliY

w*::= 4!(x)

where U, V, ... X are arbitrary functions of x and Ch C2, ••• , C6 are constants. We should
recall that the stress strain relations (3) of {l4] must be written for each layer. The use of the
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foregoing relations in the strain-displacement relations yields

h~ h U'()
EI ::;;:2'",:t::;;:2' x

E)::;;: 3w*::;;: 3q,(x)

h2 h2

14 :::;::4"(u*" + v*,x) :::;::4"[fi'(x)+ Cs]

E.::;;: 5: (w,y - Iii,,) +Sr =~ [20(x) - 2Csx +C.]

215

(18)

in each layer, where h is the layer thickness. The substitution of the strain components (18) in
the equilibrium equations (28) of [1], through the constitutive relations (25), [I], gives
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(19)

These equations are valid within each layer. Similarly the remaining field equations, the
interface continuity conditions, are given by

{
5 1 h 5 h }(k+l1
"8 x' -"8 W' - 2 cP' + U - 2r/J - 12 (S55(3t 1 - t2)+ S4s(3s\ - S2»)

{
s 1 h 5 h }(kl

+ "8 X' -8 W' +2 4>'- U -2 r/J-12 [Ss5(312 - 1\)+ S45(3s2- SI)]

= 3(C~k+l) + C~k)y + (C\k) - C\k+l)y + ~ (C\k+l) - C\k)l.

{
5 h }(k+1l

V - 2{}. -12 (S4S(3t 1 - t2) + S«(3s 1 - S2)]

{ _S33 [_7A 13h U'+(-21A +105).I.._7A36h V,+15 B h,I,'
35 2 33 S33 'I' 2 2 13 'I'

+ {- ~~3 [ _ 7At h U'+ ( -21A33 + ~~) cP- 7At h V,-li B13 hr/J'

(
_225B33 525) +(75 B _~) W_15B36h{}.,

+ 2h +2S33 h X 2h 33 2S33 h 2

+ h (1 - 7A33 S33 + 15B33 S33 ) + hp (6 _ 7A33 S33 _ 15 B33 S )] }(k)
PI 10 14 2 10 14 33

- x (S(k+I)A(k+l)h C(k+l) + S(k)A(klh C(k)) +1.- {S [-7 A23 h C -7 A36h c
3
+ 7A3.e·10 33 23 HI 1 33 23 k I 35 33 2 2 2 J J

IS 15 )}(k+1l 1 { [An A36+2 B23hC6+2 B36hCs + 35 533 -7 T hC2 -7 T hC3+ 7A3jej

_15~23h C
6
_15~36h CsJf)
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t~k) = t\k+ I)

217

(20)

The last six equations are valid for k =I, 2,--, N -I, since we recall that N is the number of
layers in the local region. Due to the symmetric lamination geometry, the interlaminar shear
stress components and the transverse displacement component W all vanish on the central
plane, Z =O. We shall take advantage of these conditions by considering only the upper half of
the laminate, i.e. z > O. Thus, the boundary conditions at the lower surface reduce to

+15B36hO'+h (6_7AnS33_15B33S33)+h (1_7A33S +15B33S )](1)
2 PI 10 14 P2 10 33 14 n

and

Since eqns (19)-(21) must be satisfied for aU values of y, it follows that

cs.t ) =~t)=~t)=0,

and

k= 1,2, ... N

k= 1,2, . .. N-l

(21)

so that Cit C2 and C3 are the same for each layer. Further, it has been shown in [l4] that

We will use these values of C/ in the forthcoming work.

GLOBAL DOMAIN

With the aid of relationships (11), we can obtain the following strain displacement relations
for the global domain
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3
EO=:_ w*

Z H

o 1( __ )
E xy = 2" U,y + v,x

o _ 3 * 9 _ 15.
EyZ-HV +gW,y gW,y

° -1- * ~ - 15.
Exz - H U +8 w" g W"

3
Kl =-u*H "

3
K2 == - v*H 'Y

_ 3 *
K4- H W 'y

3
K5 == - w*H "

(22)

where ii, u*,---w now refer to the global domain. We may also observe that the relations
(17) are also valid for the global domain. The substitution of the values of inplane strains and
curvatures in the stress-strain relations (9) through eqns (17) and their subsequent use in eqns
(12) yield the following form of equilibrium equations

1 A- U" 3 A- -k l 1 A- V' 3 E- .//' 3 E- 1'\11'2 11 +H 13'1' +"2 16 +H 11 'I' +H 16U

1 A- U" 3 A- -k' 1 A- V'+ 3 E- .//'+ 3 E- 1'\1,'2 61 + H 63'1' +2: 66 H 61 'I' H 66 u

1 A- U' 3 D -J,II 3 A- -J, lA- V'+ 3 (B- E- ).//'2 31 - H 55'1' + H 33'1' + '2 36 H 31 - 5S 'I'
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(
9 - 15 )+ 8H AH - 2H3Dss W" +P2 - PI =0

3 [ D4S ) 0' (15 45 H ) " 45 D+ H D36 -T + 16H Dss - 4H3 S5 X +w 33X

As for the local domain, in the foregoing equations we have used

219

(23)

In eqn (23) the effective modulus matrices defined in eqns (9) are used. The continuity
conditions (13) and (13a) at Jocal-gJobaJ interface, on substitutions of (17) and (14) of the
present paper and eqns (16) of [1], reduce to
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{ S33 [7A13 hU' + (_ 21A + 105) A. _2 A hV' - ~ hB .1.'
35 2 lJ Sll 'I' 2 36 2 13 'I'

+ h (I -7A 33 S + 15B33 S33 ) + h (6 _7A33 S33 _ 15B33 S33 )] }IN)
PliO 31 14 P2 10 14

{
15 3 }IN+I)

= -x-3ljJ-- W2H 2H . (25)

The boundary conditions at the top surface considered in the present investigation are:

S~N'II = tjN' 1) = p~N'11 = O. (26)

EDGE BOUNDARY CONDITIONS

We now turn our attention to the edge boundary conditions, which require consideratian of
Nx , Nxy , Vx , Mx , Mxy , t l and t2 for each layer on x = j: b, since no displacement edge conditions
are involved in the present class of boundary value problems. However, all these functions
cannot be independently prescribed because of the consequences of interface continuity and
overall equilibrium of the entire laminate. That is, the interface continuity conditions given by
the fourth of (20) prohibit arbitrarily prescribed values of t\k) and t~k). Furthermore, t\1l and
t~N+I) have already been specified by (21) and (26) for all values of x. These relations, in
conjunction with the first equilibrium equation, see (26) of [I], and eqn (12), can be used to
establish the result

which requires that

.'I-I

~ N lk ) = 0£J x, x
k=1

(27)

(28)

Therefore, only 2N + 1 values of N~kl can be arbitrarily prescribed on the edges x = ± b. We
can make the same statement regarding NW since an equation of the form (28) can be derived
in similar fashion for this function. Hence, the edge boundary conditions for the local domain
may be expressed as

tjk)( ± b) =0 (k = 1,2, ... N)

while those for the global domain are

(29)

(30)

Thus, the present boundary value problem consists of the differential equations (19), (20), (23)
and (25) subject to boundary conditions (21), (26), (29) and (30).

The general solution for each dependent variable consists of the sum of two parts: (i) a
complementary solution defined by the homogeneous form of (19), (20), (23) and (25), and (ii) a
particular solution. In the particular solution (denoted by subscript P), the only nonvanishing
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functions are given by

where a~k) (i = 1,2) are constants given by substituting (31) into (15) and (20) to get

a (k) =~ (A(k) a-(kl - A(klh ,,) fl_ =0 k - 1 2 N
I 3AW 31l Il 23 Ie"',.." , -" •••,

where ii{3 = he{3 ({3 = 1, 2, 3, 6). Similarly using (31) in (23) and (25), we get

1 [H - - 15 • ](N+O(N+O___ _ _ __
aI - -(N+O (P3 EA z3 ) HZ aoBn

An 3

22\

(31)

(32)

(33)

Since the field equations are linear differential equations with constant coefficients, the
complementary solution (subscript H) for each dependent variable consists of a series of terms
of the form

(34)

where flcl represents any of the dependent variables and pic) are constants. The substitution of
(34) in the homogeneous form of eqns (19), (20), (23) and (25) yields a system of 13(N+1) linear
algebraic equations. This set of equations can be written in the following matrix form

[J][F] =0 (34a)

where J is a 13(N + 1»)( 13(N + 1) matrix dependent upon material properties of the laminate
and A, and F is a vector of constants pk) defined in (34). For a nontrivial solution of eqn (34a),
the determinant of the coefficient matrix J has been equated to zero and the resulting equation
bas been solved for specific values of A by the method of Jenkins and Traub [15].

The algebraic expressions for the elements of J were not written owing to tbe complexity of
such expressions, even in the simplest cases. The computer-calculated values of A have been
used to carry out the required analysis. The extreme (highest and the lowest)powers of A in the
polynomial expansion of [J] were investigated for small values of N +1 and deduced for
arbitrary values of Nand M. It was found during numerical calculations that for incompatible
extreme powers of A, the solutions for A were nonconvergent in the iterative procedure,
whereas for compatible powers these converged very rapidly. Following the procedure de­
scribed in [1], the following observations were made (i) only even powers of A occur in the
determinant, (ii) the lowest power of Ais A', and (iii) the highest power of A is AI2(N+I).

As in [1], the functions corresponding to tbe repeated zero roots for Acan be written in the
following form:

SS Vol. 19, No. 3-C
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</><t,~ = B~k)

do == 0 for k == 1,2, ... , N

(35)

E(k+I) E(k)

-ho =B~k)+-ho +B~k+l), k==I,2, ...,N-l
k+1 k

The constants Ao and Co define rigid body translation of the laminate as a unit. The remaining
constants in (35) can all be expressed in terms of Al and Cl . Hence, two constants which effect
the stress distribution have been introduced in the repeated zero part of the homogeneous
solutions.

The remaining portion of the complementary solution consists of functions of the form (34)
corresponding to the 12(N + 1) - 2 nonzero values of A(we are assuming that these roots are all
distinct). In the present formulation the number of nonzero values of A is higher than that
obtained in [1]. This is due to the difference in equilibium equations for the global domain. The
requisite number of extra boundary conditions are obtained from the last two terms of (15).
These roots occur in pairs of complex conjugates a ± ib. Using the eigenvalues and eigen­
vectors and the edge conditions (29) and (30) we can obtain the solution for the B(N + 1)

functions appearing in (19), (20), (23) and (25) as

12(N+l)-4r) == ~ F(;/e AmX +f<t,~ + fpkl, (k = 1,2, N + 1)
m=l

(37)

where the last two terms are defined by eqns (31)-(33), (35) and (36). The force and moment
resultants can be computed by substituting the results of (37) into (17) and (18) and thence into
the constitutive relations.

When each layer is isotropic and/or oriented at an angle of 0 or 90°, the compliance
components S16' 826, 836 and 84S and expansional strain e6 vanish in each layer. This leads to the
vanishing of U(k), </>(k), t~kl, t~k), N~~ and M~~. Consequently, the number of field equations and
boundary conditions is reduced. This case must be treated separately by specializing the
present derivation as in [1].

In the model presented in [1], laminates consisting of a moderate number of layers (N > 6)
could not be analyzed because of computer overflow/underflow limitations. Furthermore, while
the present work has focused On a fairly special case (only one global-local interface), more
general arrangements of global and local domains can be treated by simple modifications of the
general relations given here, e.g. eqns (13a-c) must reflect the proper positions of global and
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local media. In this way arbitrary layers can be modeled in a local fashion to define the stress
field in the entire body, if desired.

RESULTS AND DISCUSSION

For the computation of numerical results, 1300/5208 graphite epoxy material, with the
following elastic properties, has been considered:

Etl =20 x tQ'i psi, En =E33 =1.4 x tQ'i psi

GI2 =Gn =0.8 x lQ'i psi, G23 =0.6 x tQ'i psi

1112 = lin =OJ, 1123 = 0.6

~ (OH/OH/60/-601
+ (OT/OT/OT/60/-601

~ IOT/OT/OT/60H/60H/-601

-60~60

o
X

3.00

O. OO~;:=:::t~~rto~15110.11

X= x- ~ +"
h

-3.00.J---------------.J

Fig. 3. Stress distribution uJ(£ x 10") psi vs width coordinate X at the mid surface of the laminate.

0:: IE _10 6 PSI
5.00,.--'-----.::....:-.-------.

~ IOH/OH/60/-60/60/-601
+ I OH/OH/60/-60/60/-60 I

~ (01601-60/601-601

-~k-6
6

X

2.50

O. OO-t----r---,..;.oL-...,...--~
O.,~_~~~:1i

X= x-~ ... ti
h

-2.50-'--------------'

Fig. 4. Stress distnbution u,/(£ x 10") psi vs width coonIinate X at the mid surface of the laminate.
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where E, G and 1/ stand for Young's mc lulus, shear modulus and Poisson's ratio, respectively.
The subscripts denote the corresponding direclions, where 1,2,3 stand for x, y, Z, respectively,
and llii is the Poisson ratio measuring strain in the j direction caused by uniaxial stress lIi'

In most of the earlier investigations on edge effects, the Poisson ratios V!2, Vn and lIZ3 were
taken to be equal. A recent experimental study has revealed the values shown above. In
particular, the magnitude of 1123 was found to be equal to approx. 0.6 [16).

Figures 3-10 depict the distribution of stress components lIz, 1'xz and 1'yz along the width for
various laminates. The abscissa is the laminate width coordinate normalized by the half
laminate thickness, such that in these diagrams X = I represents the free edge of the laminate
and X =0 represents a point at a distance equal to the half laminate thickness from the edge.

0: I E _10 6 PS IO. 04 .,.-..lo- ..::...::. ---.

~ 190Q/90Q/-30H/-30H/30/90J

+ 190Q/90Q/-30/30/90J

~ 190H/-30/3IT!90l

::b
90~

X

0.02

O. 00 +-----r---~.::..--A+-r---44111Y.
O. d'

-0.02..1---------------'

Fig. 5. Stress distribution CT)(E x 106) psi vs width coordinate X at the mid surface of the laminate.

0: IE _106 PSI
O. 04.,...-..10.-----'"----------,

~ (90Q/90Q/-30/30/90 I

+ (90Q/90Q/-30/J07§OJ

~ 190H/-30/30790l

0.02

~
90
30

-30 •••.•....•
90

X

X= x-~+ h

•
0.00-1---.....---..----#-..----411

O. 0.25 0.5
x

-0.02..1.--------------'

Fig. 6. Stress distribution CT)(E x Itr) psi vs width coordinate X at the mid surface of the laminate.
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These results correspond to the limiting response as the laminate width approaches infinity and
can be shown to be very accurate for laminates in which the width is more than (approx.) twice
the total thickness. The coordinate axes, stacking sequence and loading conditions are shown in
the fiaures. In the symbolic notation for laminate ply orientations, a numeral followed by H, Q
and T denote one half, one quarter or one third, respectively, thickness of the corresponding
layer. The layers under a bar constitute the global region.

Fipre 3 shows the stress component U'z at· the laminate mid surface versus X for a
(0/ ± 6O),-laminate, calculated by using the formulation of [I], for three difterent layer thickness
representations. The first representation is such that the first layer from the midsurface (0") is
modeled as two sublayers, each of half the layer thickness h/2, and the other two layers are

.l-0.75

X= x- ~+ h
h

0.00
O.

O. 10+--------------,

~ 190H/-15/15/90l
'!' 190H/-15/15/901
X 190Q/90Q/-'15~Hn/~-1~5rrH/nl~5/~9~Ol

-0.10

::b
90~

X

8

x

-0.20.J--------...:'---------..J

Fig. 7. Stress distirbution uj(f! x 1(1) psi vs width coordinate X at the mid sudace of the laminate.

0.2

~ 190Q/90Q/-30/30/90l
'!' 190Q/90Q/-30/m79"l1l

X 190H/-30/~1

O. 1

~
90
30

-30
90

X

X= X-~+h
h

0.0
O. 0.25 0.5

-0.1

Fig. 8. Stress distribution .,.J(f! x 1(1) psi vs width coordinate X at the 90/- 30 interface of the laminate.
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treated individually. In the second representation, the 0° layer is modeled as three different
sublayers of equal thickness hl3. The third representation considers the 0° layer as three
sublayers of h/3 thickness each and the 60" layer as two sub-layers, each of thickness h12. The
fact that the results by all the three representations of the laminate are the same show that
these results are nearly exact.

Figure 4 shows the stress component Uz for (0/( ± 6O)z}s-laminate by three different
representations. For the first representation, the theory developed in [1] has been used and for
the other two representations the present global-local model has been u.sed. It has been seen
that the results obtained by the middle representation, i.e. (OH/OH/60/- 60160/- 60) are nearly
identical with those obtained by [1] for the same representation of the local domain. The values

0.2

¢ 1900/900/-30/30/90)

+ 1900/900/-30/3IT790)

~ 190H/-30/~1

~
90
30

-30 .
90

X

O. 1

o. 0 ~~~::;:Q:~~~11. XO.IU 1.0

-0. 1

Fig. 9. Stress distribution 'TyJ(E x 106) psi vs width coordinate X at the 901 - 30 interface of the laminate.
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4> (OH/OH/60/-"'6""O/""'6=0'""'1---'6=0)

~ IOH/OH/60/-60/160/-6013 1

3.00

•

Z.·OLBL

60
o

X

-3.00l--------------..l

Fig. 10. Stress distribution qJ(E x 1~) psi vs width coordinate X at the mid surface of the laminate.
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obtained through the third representation only differ slightly from those for the other two cases.
Further analysis shows that the "hump" is caused by insufficient subdivision of 00 layer, rather
than the local-global model.

Figure 5 shows the variation of the stress component U z along x-axis for (90HJ ± 30/90).­
laminate by three different representations. It is seen that the results obtained by the local­
global models differ considerably from those obtained by model of [I]. The results by the third
representation differ from those for the second representation adjacent to the free edge and are
close elsewhere. Figure 6 shows more results for the same laminate. In this figure the third
representation is the same as that of Fig. 5. Also in Fig. 6 we have used a different
representation, (90Qf90Q/ - 30/30/90), of the same laminate. In this case it has been found that
the agreement between the [1] model results and the local-global model results is again quite
good. Hence, an extra hump in the results by the third representation is likely due to insufticient
subdivision of the inner 90" layer. This shows that another factor may be important in obtaining
satisfactory results. The precise definition of this factor is not known presently, however, it
appears that a gradual transition between the local and global regions may be helpful in
obtaining accurate results, i.e. the middle representation of Fig. 6. Another factor involved in
the results of Fig. 5 is that the computed stress component U z is of considerably lower
magnitude as compared to that in the laminate of Fig. 4. Thus, the absolute magnitude of the
error in the results for the first representation of Fig. 5 is small, although the relative error may
be quite large. It can be seen from Fig. 7 that for the same ply representations as those in Fig. 5
the relative error in the results for (90H/ =+= 15/90).-laminate is small as compared to that for
(90H/ =+= 30/90)s-laminate. The results for (90Q/90Q/- 15/15/90) representation are also com­
puted and are the same as those of the first representation of Fig. 7. Thus, it appears that the
absolute magnitude of the stress component U z is also important in modeling the laminate
representations for accurate results.

Figure 8 shows the stress component 'Txz at the 90/- 30 interlace of a (90HJ =+= 30/90).­
laminate. As in the case of Un the results by model [I] are nearly identical to those by the
present model with (90Q/90Q/- 30/30/90) representation. The values computed through the
other representation of the present model are slightly different from the others. However, the
maximum value of 'Txz will increase with larger numbers of sublayers in the 90° ply. This is a
characteristic of the general class of models being presented and is discussed in more detail in
[1].

Figure 9 gives the stress component 'Tyz for the aforementioned laminate at the 90/- 30
interlace. In this case also, the comparison amongst the results by three different represen­
tations is reasonable, although an elastic singularity is expected in this stress component.
Hence, again significant dependence on sublayer size will be present near the edge.

Figure 10 shows the stress component U z for (0/( ± 60)"). n =I, 2, 4 laminates as computed
by the local-global model. The results given for the first two values of n, i.e. n = I, 2, are
already shown to be identical with those obtained by using [1], Fig. 3 and 4. The results for
n = 4 show the expected trend. There exist no results in the open literature to compare with
these values.

CONCLUSIONS

A self-eonsistent model has been developed to investigate the stress fields in laminated
media consisting of numerous layers. The new model defines detailed response functions, such
as interlaminar stresses and single layer forces and moments in a predetermined region of
interest (local), while the remainder of the domain is represented by its effective material
properties and the corresponding resultant forces and moments (global). The local model
employs a theory [1] which approaches the theory of elasticity in the limit of vanishing layer
thickness. The global model is based upon the theory given by Whitney and Sun [6] which has
been demonstrated to produce good agreement 'Yith elasticity results on the global boundary for
a particular laminate by Pagano [7]. While a particular arrangement of global and local domains
has been considered here for brevity, there is no difficulty in extending these results to include
more general arrangements, including the use of more than one global domain. The importance
of the latter option follows from the observation that model accuracy may be improved by a
gradual rather than abrupt transition of region.
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The effectiveness of the model has been demonstrated by use of numerical examples based
upon the free-edge class of boundary value problems in laminate elasticity. Preliminary results
have been shown to be very promising although an apparent loss in accuracy occurs in the
calculation of stress components of small magnitude, which may thus require finer subdivision
of the local region than would normally be required. Similarly, the effect of the aforementioned
"transition region" on model precision will require further study. These studies as well as the
development of a solution schemes for fully three dimensional problems (which will depend
only on two space variables in this theory), will be the subject of future investigations.

It is clear that theories of the type presented here are needed to describe the response of
laminated structural components used in practice. However, experimental activity in this regard
is vital, as proper interpretation of the field analysis, particularly in regions of very steep stress
gradients, is needed to characterize initial failure and subsequent damage growth in these
bodies.

Acknowledgement-The work reported herein was performed at the Nonmetallic Materials Division, Materials Laboratory,
Air Force Wright Aeronautical Laboratories, Wright Patterson AFB, Dayton, Ohio.

REFERENCES
I. N.1. Pagano, Stress fields in composite laminates. AFML·TR-77-114, Wright Patterson Air Force Base, Dayton, Ohio,

August 1977. Also, I/lt. 1 Solids Structures 14,385 (1978).
2. M. E. Gurtin, Continuum theory of Fracture. Mechanics of Composites Review, p. 83. Bergamo Center, Dayton, Ohio

(1977).
3. A. S. D. Wang and F. W. Crossman, Some new results on edge effect in symmetric composite laminates. 1 Composite

Mat. 11, 92 (1977).
4. E. 1. Stanton, L. M. Crain and T. F. Neu, A parametric cubic modelling system for general solids of composite

material. Int. 1 Num. Meth. Engng 11, 653 (1977).
5. N. J. Pagano, Exact moduli of anisotropic laminates. In Composite Materials, Mechanics of Composite Materials

(Edited by G. P. Sendecky), Vol. 2, pp. 23-44. Academic Press, New York (1974).
6. J. M. Whitney and C. T. Sun, Ahigher order theory for extensional motion of laminated composites. 1 Sound Vibr. 30,

85 (1973).
7. N. J. Pagano, On the calculation of interlaminar normal stress in composite laminate. 1. Composite Mat. 8,65 (1974).
8. N. J. Solomon, An assessment of the interlaminar stress problem in laminated composites. J. Composite MatI.

Supplement 14, 177 (1980).
9. R. 1. Spilker and T. C. T. Ting, Stress analysis of composites. Army Materials and Mechanics Research Center,

Watertown, Mass. Techn. Rep. AMMRC-TR-81-5, 1981.
10. 1. S. Raju, J. D. Whitcomb and J. G. Goree, A new look at numerical analyses of free edge stresses in composite

laminates. NASA Tech. Paper 1751, 1981.
II. N. N. Blumberg and V. P. Tamuzh, Edge effects and stress concentrations in multilaminate composite plates.

Mechanics of Composite Materisls, pp. 298-307 (1980). Translated from Russian R. Mekh. Kompositn. Mater. 3, 424
(1980).

12. V. V. Partsevskii, Approximate analysis of mechanisms of fracture of laminated composites at a free edge. Mechanics
of Composite Materials, pp. 179-185 (1980). Translation from Russian R. Mekh. Kompositn. Mater. 2, 246 (1980).

13. N. J. Pagano and R. B. Pipes, Some observations on the interlaminB! strength of composite laminates. Int. Mech. Sei.
IS, 679 (1973).

14. N. J. Pagano, Free edge stress fields in composite laminates. Int. 1. Solids Structures 14,401 (1978).
IS. M. A. Jenkins and J. F. Traub, A three stage variable-shift interation for polynomial zeros and its relation to

generalized Rayleigh iteration. Numerische Mathematik 14, 252 (1970).
16. M. Knight and N. J. Pagano, The determination of interlaminar moduli of graphite/epoxy composites. Seventh Annual

Mechanics of Composites Review, AFWAL/NASA/NAVY/ARMY, Dayton Ohio, 28-30, Oct. 1981.


